Many 2-Level Polytopes from Matroids

نویسندگان

  • Francesco Grande
  • Juanjo Rué
چکیده

The family of 2-level matroids, that is, matroids whose base polytope is 2-level, has been recently studied and characterized by means of combinatorial properties. 2-level matroids generalize series-parallel graphs, which have been already successfully analyzed from the enumerative perspective. We bring to light some structural properties of 2-level matroids and exploit them for enumerative purposes. Moreover, the counting results are used to show that the number of combinatorially non-equivalent (n−1)-dimensional 2-level polytopes is bounded from below by c·n−5/2 ·ρ−n, where c ≈ 0.03791727 and ρ−1 ≈ 4.88052854.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing neighborly polytopes and oriented matroids

A d-polytope P is neighborly if every subset of b d 2 c vertices is a face of P . In 1982, Shemer introduced a sewing construction that allows to add a vertex to a neighborly polytope in such a way as to obtain a new neighborly polytope. With this, he constructed superexponentially many different neighborly polytopes. The concept of neighborliness extends naturally to oriented matroids. Duals o...

متن کامل

On Vertices and Facets of Combinatorial 2-Level Polytopes

2-level polytopes naturally appear in several areas of pure and applied mathematics, including combinatorial optimization, polyhedral combinatorics, communication complexity, and statistics. In this paper, we present a study of some 2-level polytopes arising in combinatorial settings. Our first contribution is proving that f0(P )fd−1(P ) ≤ d2 for a large collection of families of such polytopes...

متن کامل

The Universality Theorems for Oriented Matroids and Polytopes

Universality Theorems are exciting achievements in the theories of polytopes and oriented matroids. This article surveys the main developments in that context. We explain the basic constructions that lead to Universality Theorems. In particular, we show that one can use the Universality Theorem for rank 3 oriented matroids to obtain a Universality Theorem for 6-dimensional polytopes. 1 Universa...

متن کامل

Subgraph polytopes and independence polytopes of count matroids

Given an undirected graph, the non-empty subgraph polytope is the convex hull of the characteristic vectors of pairs (F, S) where S is a nonempty subset of nodes and F is a subset of the edges with both endnodes in S. We obtain a strong relationship between the non-empty subgraph polytope and the spanning forest polytope. We further show that these polytopes provide polynomial size extended for...

متن کامل

On Laminar Matroids and b-Matchings

We prove that three matroid optimisation problems, namely, the matchoid, matroid parity and matroid matching problems, all reduce to the b-matching problem when the matroids concerned are laminar. We then use this equivalence to show that laminar matroid parity polytopes are affinely congruent to b-matching polytopes, and have Chvátal rank equal to one. On the other hand, we prove that laminar ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2015